
Assessing Live Programming for Program Comprehension in
Tertiary Education

Oliver Graf∗
olgraf@ethz.ch
ETH Zürich

Zürich, Switzerland

Sverrir Thorgeirsson∗
sverrir.thorgeirsson@inf.ethz.ch

ETH Zürich
Zürich, Switzerland

Zhendong Su
zhendong.su@inf.ethz.ch

ETH Zürich
Zürich, Switzerland

ABSTRACT
Previous research on the effects of live program composition in
computer science education has shown mixed results; while live
programming is well-received by students and can improve the
program composition process in some contexts, the resulting pro-
grams may be hard to understand, potentially making the paradigm
unfeasible for collaborative and general-purpose programming. In
this paper, we explore to what extent programs created in Algot,
a live programming language, can be understood by tertiary-level
students. We conducted an experimental, within-subjects study
(𝑛 = 41) measuring how well students at this level could com-
prehend programs composed in Algot and Python. We asked our
participants to explain the programs and answer questions on them
related to tracing, reverse tracing, conceptual extrapolations, and
(optionally) time complexity. Despite the participants’ lack of fa-
miliarity with Algot, students performed better after viewing most
programs in Algot than Python (Cohen’s 𝑑 0.67), but primarily for
problems involving trees and matrices. Our results contribute to
the body of research on live programming in computer science (CS)
education and complement recent research on the benefits of Algot
for program composition, suggesting that Algot can be useful as a
more general learning resource in CS tertiary education.

CCS CONCEPTS
•Human-centered computing→ Visualisation systems and tools;
Empirical studies in visualisation; • Applied computing → Inter-
active learning environments.

KEYWORDS
visual programming, live programming, programming by demon-
stration, program comprehension, tertiary education

ACM Reference Format:
Oliver Graf, Sverrir Thorgeirsson, and Zhendong Su. 2024. Assessing Live
Programming for Program Comprehension in Tertiary Education. In Pro-
ceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

∗Oliver Graf and Sverrir Thorgeirsson are co-primary authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Live programming refers to the process where changes in source
code are immediately reflected in the program’s execution, offer-
ing real-time feedback of the program’s behaviour. This approach
stands in contrast to traditional programming methods where code
modifications necessitate a separate compile-and-run phase to ob-
serve changes [23, 32, 33]. Its purported advantage lies in its ability
to enhance understanding and debugging of code by providing
instant visual feedback, which can be particularly helpful for begin-
ners in both exploring ideas and in grasping programming concepts
and logic [6].

In general, the focus with live programming is on the program
composition process rather than the resulting program itself. Creat-
ing programs is sometimes only a secondary goal of live program-
ming [30], with the primary goal to create a one-time effect where
the program plays no role and is discarded afterwards. In computer
science (CS) education, besides its perceived benefit in making pro-
gram composition easier, researchers have also explored the effect
of live programming on learning. For instance, the live code visu-
alisation tool Python Tutor, which has been used by millions of
users [8], has been the subject of several such studies [17, 18, 26].
However, studies on the program comprehension and usefulness
of the programs themselves that are generated from live program-
ming are scarce and limited to specific domains such as robotics
education; one such study found that programs written in a live
language were no better for comprehension than ones written in a
non-live language [3].

In this paper, we explore how well tertiary-level students can
understand programs that were composed via live programming
for solving a curated set of introductory CS exercises. To do so, we
chose programs written in Algot, a live, visual language that sup-
ports direct manipulation on the program state via programming
by demonstration [35, 38]. We chose Algot for two reasons. First,
controlled, experimental studies indicate that Algot performs well
in certain contexts when it comes to program composition [36] and
learning outcomes [34], but to our best knowledge, no studies are
available on how well existing Algot programs can be understood
in the interactive, step-by-step presentation style that the language
uses. Further clarity on this question would help establish whether
Algot’s effectiveness is limited to simple program composition ac-
tivities or whether it can provide a more comprehensive solution
in CS education. Second, as Algot is specifically designed for live
programming, its use in this study will give insight into whether
live programming can help or hinder program understanding.

We begin by explaining how we equipped Algot with a novel,
example-based programming system as suggested by the Algot
authors in the future work section of their 2022 paper [38]. Then

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Trovato and Tobin, et al.

 Operation

 Helper

89 : 20

 

 



 



 



 

 

 

If <

If <

If <

[[3, 2, 1], [11, 11, -2], [10, 2, 2], [1, 0, 1]]

[[3, 2, 1], [11, 5, -2], [10, 2, 2], [1, 0, 0]]

[[1, 2, 3], [-2, 5, 11], [2, 2, 10], [1, 0, 0]]

[[3, 3, 3], [11, 11, 11], [10, 10, 10], [1, 1, 1]]

[[10, 10, 7], [-2, -3, -2], [10, 2, 1], [1, 1, 0]]

[[-1, 10, 7], [-5, -3, -2], [2, 10, 1], [0, 1, 1]]

[[2, 10, 7], [-5, -3, -2], [10, 2, 1], [0, 1, 0]]

None of the above

Select an Operation

3

3

1

1

5

7

3

2

0

1

2

1

Operation



Figure 1: A screenshot of the Algot system used in the study. It shows the Algot version of task 5 (Matrix Update). Currently,
the recursive calls to Helper are opened, as is the first recursive call to Operation. The screenshot is slightly cropped to
reduce whitespace.

we report on our experimental, within-subjects study on 41 tertiary-
level students who were provided with programs written in Algot
and Python and asked to solve different types of questions per-
taining to the programs. Five of the six programs we used were
solutions to CodeCheck problems [14], an online repository of in-
troductory CS coding problems that has been used frequently in
CS1 research in recent years [1, 5, 37].

The primary research questions for our study were:
RQ1 Is Algot’s experimental way of program presentation a viable

alternative to traditional text-based presentation?
RQ2 Do tertiary-level students report enjoying solving compre-

hension questions more in Algot or Python?
We hypothesised that the participants of the study would per-

form better or equally well using the Algot environment, as its live
and example-based style may make program comprehension easier,
and that they would also find it more enjoyable to use.

2 BACKGROUND AND RELATEDWORK
2.1 Live Programming
In contrast to traditional text-based programming, which requires
programmers tomaintain amentalmodel of the program state as the
code changes, live programming offers an immediate and interactive
feedback loop, allowing a real-time representation of state changes
when code is modified. However, the effectiveness of live sys-
tems in computer science education is mixed and implementation-
dependent; for example, some have expressed concerns that live
systems can sometimes overload users with information they do not
need [24]. Their effectiveness can also be task-dependent; one study
on the spreadsheet language Forms/3 found that liveness helped
programmers with complex tasks, while it did not help or even

hindered them when solving simpler tasks [39]. In a robotics educa-
tion setting, a more recent study on a small number of participants
failed to find any positive correlation between a live programming
environment and program comprehension, even though liveness
led to a more enjoyable development experience [3].

One of the most widely used live programming environments is
Python Tutor, a Python environment that allows users to iteratively
step through programs and observe the effects of individual instruc-
tions on a visualisation of the program state [9]. Python Tutor has
been shown to improve the learning experience in introductory pro-
gramming courses, even though it does not necessarily constitute
an improvement over traditional programming methods [15, 16].

Some challenging topics in CS education can potentially be eas-
ier to teach in live systems. As an example, recursion is traditionally
regarded as a very difficult topic to understand for novice program-
mers, and is often cited as a problem area in CS1/CS2 education
[4]. However, studies have found that teaching recursion first does
not lead to worse outcomes [25], and that recursive programs are
sometimes better understood than iterative programs by more ad-
vanced programmers [2]. A live presentation of concrete program
states has the potential to enhance students’ ability to understand
and apply concepts like recursion, as concrete examples tend to
improve educational outcomes [40].

2.2 Algot
Algot is a visual, graph-based programming language which sup-
ports direct manipulation and programming by demonstration as its
underlying programming paradigm [35, 38]. In Algot, the program
state is visually represented as a graph. The state graph can, for
example, be a set of singleton nodes, linked lists, trees, or matrices,
and it can be modified by applying operations on individual nodes,

Assessing Live Programming for Program Comprehension in Tertiary Education Conference’17, July 2017, Washington, DC, USA

for example by deleting them, changing their values, or adding new
edges, all with an immediate visual effect.

In Algot, certain operations are available in the system by default.
User-defined operations are created by demonstrating base oper-
ations or other user-defined operations on specific input, which
means that the programmer can define a new program simply by
executing a list of operations in sequence. Since Algot is a live
programming language, this means that the structure of the input
can visibly change or new nodes may be created when the pro-
gram is being composed. The programmer can choose to apply
operations conditionally based on the results of queries, which are
natural-language binary questions about a given set of nodes, such
as "Does this node have outgoing edges?" or "Is the value of node B
less than the value of node C?". Iteration is achieved via recursion,
which means that the programmer calls the operation that is being
defined. More information on the language is available in a 2022
paper [38].

We are aware of two empirical studies on the program compo-
sition mechanism in Algot. A comparative, controlled study on
secondary school students found that they exhibited a better under-
standing of the recursion mechanism after programming in Algot
rather than after programming with the Make-a-Block feature in
Scratch [34]. Another comparative study onAlgot and Python found
that undergraduate students experienced lower cognitive loadwhen
programming in Algot, according to physiological measurements
and a validated survey, and performed significantly better on the
simple programming tasks that were used [36].

3 EXAMPLE-BASED PROGRAMMING IN
ALGOT

After getting access to Algot, we implemented additional support
for liveness ahead of our study. For example, we made adjustments
to the program composition process in order to allow Algot pro-
grammers to directly see the effects of their programs on example
values instead of relying on an abstract approximation. We call this
example-based programming (not to be confused with program
synthesis, as the term is sometimes used [28]), similar to a recent
system for text-based programming called Babylonian programming
[19, 27, 29]. In Algot, this means that the programmer is always
working with concrete values of their own choice when defining
new operations. For example, Figure 3 shows how one might define
an operation on two input lists where the objective is to find the
index of the first element where the lists differ. Before defining the
operation, the programmer may choose to populate the input lists
with the values [2,5,3,4] and [2,5,1,4], allowing one to
see in real-time how the value of the third argument 𝑐 changes
throughout the definition of the operation from 0 to its correct
value 2. Our belief is that this will aid programmers with program
composition, if only because it means the programmer must think
of and use at least one test case for any given operation, and with
program comprehension (see the study described in the paper).

We also added support for programmers to step through the
execution of the program in order to observe the current state
at any given time, similarly to adding break points in a textual
debugger. This allows Algot programmers to examine the effects
of recursive operations in a more fine-grained manner. Figure 1

shows a screenshot of the Algot system used in the user study. The
left-hand side contains a textual representation of the program,
including currently opened recursive calls. The center of the screen
shows the graphical representation of the example program state.
For our study, some features were deliberately omitted from the
testing environment, such as the opportunity to change the example
values at any point; we believed that this might make, for example,
tracing questions very simple to solve.

4 METHOD
After receiving ethics approval from our institution, we conducted
a controlled, experimental study under a within-subjects design
where each participant was asked to solve questions on six tasks
in each language. The tasks were to be solved sequentially with
each program presented together with the corresponding questions.
To minimise carryover effects, each participant first solved three
randomly chosen tasks in one language and then the other three in
the other language. This was then followed by the original three
tasks in the second language and the next three in the first language
in reverse order.

We recruited 43 students for our study. The inclusion criteria was
to have successfully completed at least one introductory computer
science course, to be a tertiary education student, and to have some
experience with the programming language Python. As a pretest,
students solved a set of Python exercises in different categories
(writing, tracing, reverse tracing, and Parson problems), loosely
adapted from a study on the hierarchy of computer programming
skills [21] that was recently replicated [7]. We also included two
questions from the Basic Recursion Concept Inventory [10] to un-
derstand how familiar the participants were with recursion.

After the pretest, participants watched a brief video introduc-
tion to how to navigate the Algot environment and received a
double-sided handout they could use for the remaining part of the
study, with some useful, general information on time complexity,
graphs and trees, Python syntax (for example tuple unpacking and
the meaning of special syntax such as l[-1] and l[1:3]) and
the naming convention for Algot nodes. Afterwards, participants
were asked to solve the six tasks of the study in both languages
(see the next section). Following this, participants rated the Algot
programming environment using three scales of the User Experi-
ence Questionnaire Plus (UEQ+) [20], meaning that the participants
were given four different adjective-antonym pairs for each scale
and asked to select a number from 1 to 7 indicating their agreement
with each word in the pair. The three scales selected were useful-
ness, clarity and novelty, the first two of which are recommended
by the UEQ+ authors for the evaluation of programming systems.
Afterwards, participants were asked to rate their enjoyment of
working with Algot and Python on a 5-point scale, and lastly to
offer optional free-form comments on their study experience.

The participants were given up to 30 minutes to complete the
pretest and two hours in total for the entire study (including the
pretest and the posttest). The study was conducted over two dif-
ferent sessions occurring on the same day, with about half of the
participants attending each session. Participants were compensated
the equivalent of approximately 30 USD in the local currency for
each hour of their time, or 60 USD in total.

Conference’17, July 2017, Washington, DC, USA Trovato and Tobin, et al.

Study Tasks

(1) Simple String: If the first and last characters of a string 𝑠
are the same, remove them.

(2) Character Swap: In a string 𝑠 , swap the characters adja-
cent to all occurrences of a character 𝑐 .

(3) Two Lists: For two input lists, return the first index where
the lists have different values.

(4) Closest Number: For an integer 𝑥 and an input list 𝑙 of
integers, return the position of the first element in 𝑙 that
is closest to 𝑥 .

(5) Matrix Update: In a two-dimensional list𝑚 of integers,
update the value of the first element in each row of 𝑙 with
the maximum value of the row.

(6) Heap Deletion: In an input binary max-heap, remove the
root 𝑟 and restore the heap condition.

Figure 2: The six tasks that were selected for the study. The
first five tasks were selected from the CodeCheck list of
Python exercises [14]. Each task was implemented in Al-
got and Python without comments and with non-descriptive
functions and variable names.

4.1 Tasks
A description of the tasks used for the study can be found in Fig-
ure 2. The code for each task was as identical in Algot and Python
as possible, with minor adjustments to reflect different variable
names and slightly different program structures used by the differ-
ent languages. To make the comparison as fair as possible, we used
recursion in both languages.

For each task, the participants were asked four questions: (i) to
provide an explanation in plain English of the effect of the code;
(ii) to select the output produced by the program for some concrete
input (tracing), which were distinct from those used to define the
Algot programs; (iii) to select inputs that produce a given output
(reverse tracing), a more challenging problem type than tracing that
requires a similar but a distinct thought process [11]; (iv) to answer
a conceptual question related to the program, for example how the
algorithm might be adjusted to meet a different criteria. We also
included a fifth bonus question on algorithmic time complexity,
which was optional since we did not expect all participants to be
familiar with this topic.

The first five tasks were taken from CodeCheck problems [14],
an online repository of introductory CS coding problems. Our aim
was to select tasks involving different types and data structures
commonly used in CS1, such as strings, lists, matrices, and trees, and
to have at most one task from each CodeCheck category. We made
a minor adjustment to the fifth task selected (Matrix Update) to
simplify the implementation in Algot and Python. We also added a
separate sixth task on a canonical data structure operation involving
heaps since there are no CodeCheck questions on trees. With a
diverse representation of tasks, we also hoped to discover more
about the effects of Algot’s graphical representation of structures
other than singleton nodes, linked lists, or matrices.

Figure 3 and Listing 1 show our implementation of the program
for the third task (Two Lists) in Algot and in Python, respectively.

 My Operation

 



 



 





If =

If =

If =

If =

If =

If =

Select an Operation

2

5

3

4

2

5

1

4

1

My Operation

 My Operation

 



 



 





If =

If =

If =

If =

If =

If =

Select an Operation

2

5

3

4

2

5

1

4

1

My Operation

 My Operation

 



 



 





If =

If =

If =

If =

If =

If =

Select an Operation

2

5

3

4

2

5

1

4

1

My Operation

 My Operation

 



 



 





If =

If =

If =

If =

If =

If =

Select an Operation

2

5

3

4

2

5

1

4

1

My Operation

Figure 3: Implementation of the task Two Lists in Algot. Op-
erations that are not executed due to the queries being eval-
uated as false are displayed in gray. Note the example values
used for the task (see the visualisation on the right).

def f(l, m):
def aux(l, m, i):

if l[0] != m[0]:
return i

return aux(l[1:], m[1:], i+1)
return aux(l, m, 0)

Listing 1: Implementation of Two Lists in Python

4.2 Data Analysis
After grading the students’ performance, we used the Wilcoxon’s
signed-rank version of the Bayesian Paired Samples t-test with
10,000 samples to analyse the difference between the mean per-
centage of tasks solved in each language for each participant. This
non-parametric statistical test is useful in this context since it does
not require any assumptions about the distributions of the data
and is suitable for small sample sizes [13]. The resulting Bayesian
Factors (𝐵𝐹+0) can be interpreted as the strength of the alternative
hypothesis (that students would perform better in Algot) over the
null hypothesis, with values above 3 typically considered moderate
evidence and values over 10 typically considered strong evidence.
All results were computed with the statistical software JASP [22].

We also applied simple quantitative analysis on the free-form
feedback, using thematic coding to identify common themes and
patterns in the responses. This way, we hoped to gain a contextual
understanding of the qualitative results, in particular of students’
perceptions of Algot and how it compares to Python for program
comprehension.

5 RESULTS
Of the 43 participants initially recruited, 41 participants completed
the study and two withdrew or did not submit any solutions. The
participants were between the age of 18 and 36 with a median age
of 23. There were 17 female and 24 male participants. None of them
had used Algot before. The participants performed reasonably well
on the Python pretest, solving on average 62.7% of the questions
correctly, including 50.0% on the two questions on recursion.

Assessing Live Programming for Program Comprehension in Tertiary Education Conference’17, July 2017, Washington, DC, USA

Figure 4: A visualisation of the UEQ+ survey results. Par-
ticipants were asked to rate the following properties of the
Algot environment: usefulness (top), novelty (middle) and
perspicuity (bottom). The colors gradients represent scores
from -3 (dark red) to 3 (dark blue).

A detailed analysis of the performance of the participants can be
found in Table 2. Overall, the participants performed significantly
better in Algot than in the Python environment, with an effect size
(Cohen’s𝑑) of 0.67 and a Bayes Factor of 4860, indicating very strong
support for the alternative hypothesis. Much of the difference in
the results can be attributed to the performance on the fifth and
sixth tasks (Matrix Update and Heap Deletion). The participants
did perform better in Python than Algot on the second and fourth
tasks (Character Swap and Closest Number), although by a smaller
margin. These results match our hypothesis from Section 1 that
participants would perform better in Algot overall. We also found
that the participants performed better across every question type,
with substantial improvements in the explaining and tracing skills
(Cohen’s 𝑑 0.61 and 0.62).

24 participants (59%) chose to answer the bonus questions on
time complexity. The participants performed similarly well across
languages (a performance of 54.3% in Algot and 52.6% in Python).

The results on the UEQ+ can be found in Figure 4. The ratings
were generally positive, with only one adjective-pair (confusing-
clear) rated below the middle point of 4. However, despite many
students finding Algot confusing for program comprehension, they
also found it understandable and easy to learn, and more found it
to be helpful and useful than those who did not. The novelty of
the system was rated most strongly, with a majority of participants
finding the language at least somewhat creative and innovative.
Additionally, the participants reported that they enjoyed solving
the tasks in Algot more than in Python (Cohen’s 𝑑 0.26; see more
in Table 2).

21 participants chose to leave optional free-form feedback. Af-
ter reading through them, we assigned three thematic codes: (i)

Language Feedback, (ii) Study Feedback, and (iii) Other. Of the eight
instances of language feedback, four responses contained only pos-
itive remarks on Algot such as “The Algot environment is great.
The execution is very clear to understand and follow”, “Some of
the codes in Python, I was not able to understand. However, same
codes in Algot were clear for me” and “i really liked algot. i wish
i had more time to practice with it”, three comments contained
reserved positive feedback on Algot, but with the notion that the
systemwould be hard for program composition or only useful when
used together with Python (e.g., “i quite liked Algot it made under-
standing the program a lot easier but it’s only beneficial as an extra
to the codes”), and one comment was critical of Algot (“Not sure
how useful this would be. I feel like looking at the original python
program is less confusing sometimes”). Overall, the language feed-
back appear congruent with the UEQ+ results and the self-reported
difference in enjoyment between the two languages.

11 responses were on the study design, thereof six remarks on
minor technical parts such as perceived issues with some of the
code, visualisation, or its presentation, three remarks were on the
tasks being too difficult, and two others could be characterised
as objections to the within-subjects design of the study. The two
remaining comments that we categorised as Other were on the
Python background of the student.

We also measured a few other metrics to help contextualise the
results. We found that participants spent, on average, roughly an
equal amount of time on the Algot and Python tasks (6.88 and 6.80
minutes per task, respectively). We also looked into whether the
performance improved on a given task when solving it later in
the other language, and found, surprisingly, that the performance
was slightly worse, which may possibly be attributed to fatigue.
We found a strong correlation between performance in the pretest
and the main study for both the explaining and tracing skills (see
Table 1).

Lastly, we note some minor experimental and implementation
errors that occurred. During the first session, we found that the
two programs on the Two Lists task were not as similar as we had
intended, an issue that we addressed ahead of the second session.
The performance of the participants in the first session on this task
was therefore not included in the analysis. We also noted that the
conceptual question on the Heap Deletion task was not displayed
in both language environments, so to maintain fairness, we did
not include the performance on this question for this task in our
analysis. Also, one participant accidentally skipped a task due to a
keybinding in the user interface that we were unaware of, so we
excluded their performance of in our results.

Mean (PT) Corr PT→A Corr PT→P

Overall 62.7 0.476 0.460

Explaining 52.4 0.571 0.556
Tracing 73.2 0.104 0.286

Table 1: The correlations between performances on the
pretest (PT) and the Algot (A) and Python (P) environments
on the different skills examined. The correlation columns
contain the Pearson correlation coefficient.

Conference’17, July 2017, Washington, DC, USA Trovato and Tobin, et al.

Mean (A) Mean (P) SD (A) SD (P) Cohen’s 𝑑 (SE) 𝐵𝐹+0

Overall 58.2 47.7 20.2 21.2 0.667 (0.13) 4860

Task 1 (Simple String) 78.2 71.2 25.8 24.4 0.218 (0.16) 1.12
Task 2 (Character Swap) 49.8 57.2 33.7 34.3 -0.252 (0.14) 0.07
Task 3 (Two Lists) 71.1 59.7 30.5 33.5 0.313 (0.17) 2.82
Task 4 (Closest Number) 28.4 31.9 31.7 36.4 -0.118 (0.10) 0.12
Task 5 (Matrix Update) 74.2 41.9 34.4 40.5 0.623 (0.23) 253
Task 6 (Heap Deletion) 50.6 29.5 32.0 28.8 0.560 (0.21) 120

Code explanation 57.1 48.6 24.5 25.9 0.607 (0.09) 776
Tracing 68.6 56.1 23.0 23.6 0.619 (0.15) 305
Reverse tracing 43.3 32.1 22.9 23.7 0.446 (0.18) 30.1
Conceptual question 63.9 58.7 20.0 27.5 0.203 (0.17) 0.385

Enjoyment 3.51 3.12 1.12 1.05 0.258 (0.221) 1.249
Table 2: The student performance on the Algot (A) and Python (P) tasks, expressed as percentage points of the maximum score.
SD is standard deviation, SE refers to Cohen’s 𝑑 standard error, and 𝐵𝐹+0 is the Bayes Factor under the alternative hypothesis
that score(A) > score(P). The bottom row contains the rating of how much the participants enjoyed the Algot and Python
environments (ranking from 1 to 5).

6 DISCUSSION
In general, the performance results were aligned with our hypothe-
sis that students would experience better program comprehension
when viewing the tasks using Algot than Python. The strength
of the results, however, varied between the tasks, with the two
tasks on trees and matrices appearing to be better suited for Al-
got than the four others. It is possible that Algot is well-suited for
tasks on graph-based or multidimensional data structures. In gen-
eral, we find the results to be particularly convincing considering
that all participants had some experience with Python, but were
encountering Algot for the first time.

We do not consider the results to reflect negatively on Python
as a programming language in CS education. Many programming
environments support the visualisation of Python code, for example
Python Tutor [9] or visual debuggers [12, 31], and a direct compar-
ison between Algot and such environments may well have given
different results. The objective of the study was not to carry out
such a comparison, but rather to find whether Algot’s program rep-
resentation is viable by comparing it against an established baseline,
and second, to understand better the effects of liveness itself on
program comprehension. On the first point, our results indicate that
Algot’s program representation is viable, and on the second point,
we believe our study contributes to research on “the productivity
advantages of live programming for understanding existing code,”
as put by Campusano [3], whose small study on the topic was the
first of this type. To our knowledge, our experiment is only the
second such study, and the first to find clear evidence in favour of
liveness on program comprehension.

6.1 Threats to Validity
Regarding the ecological validity of the study, we note that it was
conducted in an environment that is different from the typical set-
ting inwhich comprehension skills are typically applied, as program
comprehension is usually relevant when students or developers

work with larger systems containing more code. Furthermore, the
participants would likely be using their own software and hardware
instead of those provided during the study.

Some priming effects may have occurred, both for Algot and
Python due to the short video tutorial and the Python pretest,
respectively, but we find it unlikely that this significantly shifted
the direction or strength of the results. Some of the implementation
errors described in the previous section may also have had a small
effect on the results.

The results of the study are limited to the selected programming
tasks and exercises. While we aimed for a balanced range of tasks, it
is possible that the results would be different under a different selec-
tion, for example with more complex tasks, or ones that emphasised
other topics commonly taught in introductory CS.

7 CONCLUSION
Using typical CS1 tasks, this study presents evidence that programs
written in Algot, an experimental live programming environment
based on programming by demonstration, are as easy to compre-
hend by tertiary-level students as programs written in the textual
language Python. Algot worked particularly well on tasks related
to matrices and trees, underscoring its potential effectiveness in
visualizing and understanding graph-based data structures. The
participants, despite their inexperience with Algot and familiarity
with Python, demonstrated a slight preference for Algot in terms
of enjoyment, and rated it highly on most usability metrics. These
results indicate that at least some live programming environments
can enhance program comprehension in CS1.

REFERENCES
[1] Nimisha Agarwal, Viraj Kumar, Arun Raman, and Amey Karkare. 2023. A Bug’s

New Life: Creating Refute Questions from Filtered CS1 Student Code Snapshots.
In Proceedings of the ACM Conference on Global Computing Education Vol 1. 7–14.

[2] Alan C Benander, Barbara A Benander, and Howard Pu. 1996. Recursion vs.
iteration: An empirical study of comprehension. Journal of Systems and Software
32, 1 (1996), 73–82.

Assessing Live Programming for Program Comprehension in Tertiary Education Conference’17, July 2017, Washington, DC, USA

[3] Miguel Campusano, Alexandre Bergel, and Johan Fabry. 2016. Does Live Pro-
gramming Help Program Comprehension?. In A user study with Live Robot Pro-
gramming. In Proceedings of the 7th International Workshop on Evaluation and
Usability of Programming Languages and Tools. ACM, Amsterdam, Netherlands.

[4] Nell B Dale. 2006. Most difficult topics in CS1: results of an online survey of
educators. ACM SIGCSE Bulletin 38, 2 (2006), 49–53.

[5] Paul Denny, Viraj Kumar, and Nasser Giacaman. 2023. Conversing with copilot:
Exploring prompt engineering for solving cs1 problems using natural language. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1. 1136–1142.

[6] Johan Fabry. 2019. The meager validation of live programming. In Companion
Proceedings of the 3rd International Conference on the Art, Science, and Engineering
of Programming. 1–6.

[7] Max Fowler, David H Smith IV, Mohammed Hassan, Seth Poulsen, MatthewWest,
and Craig Zilles. 2022. Reevaluating the relationship between explaining, tracing,
and writing skills in CS1 in a replication study. Computer Science Education 32, 3
(2022), 355–383.

[8] Philip Guo. 2021. Ten million users and ten years later: Python tutor’s design
guidelines for building scalable and sustainable research software in academia.
In The 34th Annual ACM Symposium on User Interface Software and Technology.
1235–1251.

[9] Philip J Guo. 2013. Online python tutor: embeddable web-based program visual-
ization for cs education. In Proceeding of the 44th ACM technical symposium on
Computer science education. 579–584.

[10] Sally Hamouda, Stephen H Edwards, Hicham G Elmongui, Jeremy V Ernst, and
Clifford A Shaffer. 2017. A basic recursion concept inventory. Computer Science
Education 27, 2 (2017), 121–148.

[11] Mohammed Hassan and Craig Zilles. 2021. Exploring ‘reverse-tracing’Questions
as a Means of Assessing the Tracing Skill on Computer-based CS 1 Exams. In
Proceedings of the 17th ACM conference on international computing education
research. 115–126.

[12] Juha Helminen et al. 2009. Jype–an education-oriented integrated program visu-
alization, visual debugging, and programming exercise tool for python. Master’s
Thesis 1 (2009).

[13] Myles Hollander, Douglas A Wolfe, and Eric Chicken. 2013. Nonparametric
statistical methods. John Wiley & Sons.

[14] Cay S. Horstmann. n. d.. CodeCheck Python Exercises. https://horstmann.com/
codecheck/python-questions.html Retrieved December 1, 2023.

[15] Ruanqianqian Huang, Kasra Ferdowsi, Ana Selvaraj, Adalbert Gerald Soosai Raj,
and Sorin Lerner. 2022. Investigating the impact of using a live programming
environment in a CS1 course. In Proceedings of the 53rd ACM Technical Symposium
on Computer Science Education-Volume 1. 495–501.

[16] Oscar Karnalim and Mewati Ayub. 2017. The effectiveness of a program visualiza-
tion tool on introductory programming: A case study with PythonTutor. CommIT
(Communication and Information Technology) Journal 11, 2 (2017), 67–76.

[17] Oscar Karnalim andMewati Ayub. 2017. The use of python tutor on programming
laboratory session: Student perspectives. Kinetik: Game Technology, Information
System, Computer Network, Computing, Electronics, and Control (2017), 327–336.

[18] Oscar Karnalim and Mewati Ayub. 2018. A Quasi-Experimental Design to Evalu-
ate the Use of PythonTutor on Programming Laboratory Session. International
Journal of Online Engineering 14, 2 (2018).

[19] Eva Krebs, Toni Mattis, Patrick Rein, and Robert Hirschfeld. 2023. Toward
Studying Example-Based Live Programming in CS/SE Education. In Proceedings
of the 2nd ACM SIGPLAN International Workshop on Programming Abstractions
and Interactive Notations, Tools, and Environments. 17–24.

[20] Bettina Laugwitz, Theo Held, and Martin Schrepp. 2008. Construction and
evaluation of a user experience questionnaire. In HCI and Usability for Education
and Work: 4th Symposium of the Workgroup Human-Computer Interaction and
Usability Engineering of the Austrian Computer Society, USAB 2008, Graz, Austria,
November 20-21, 2008. Proceedings 4. Springer, 63–76.

[21] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Rela-
tionships between reading, tracing and writing skills in introductory program-
ming. In Proceedings of the fourth international workshop on computing education
research. 101–112.

[22] Jonathon Love, Ravi Selker, Maarten Marsman, Tahira Jamil, Damian Dropmann,
Josine Verhagen, Alexander Ly, Quentin F Gronau, Martin Šmíra, Sacha Epskamp,
et al. 2019. JASP: Graphical statistical software for common statistical designs.
Journal of Statistical Software 88 (2019), 1–17.

[23] Sean McDirmid. 2007. Living it up with a live programming language. ACM
SIGPLAN Notices 42, 10 (2007), 623–638.

[24] Sean McDirmid. 2013. Usable live programming. In Proceedings of the 2013
ACM international symposium on New ideas, new paradigms, and reflections on
programming & software. 53–62.

[25] Claudio Mirolo. 2012. Is iteration really easier to learn than recursion for CS1 stu-
dents?. In Proceedings of the ninth annual international conference on International
computing education research. 99–104.

[26] Monika Mladenović, Žana Žanko, and Marin Aglić Čuvić. 2021. The impact of
using program visualization techniques on learning basic programming concepts
at the K–12 level. Computer Applications in Engineering Education 29, 1 (2021),
145–159.

[27] Fabio Niephaus, Patrick Rein, Jakob Edding, Jonas Hering, Bastian König, Kolya
Opahle, Nico Scordialo, and Robert Hirschfeld. 2020. Example-based live pro-
gramming for everyone: Building language-agnostic tools for live programming
with lsp and graalvm. In Proceedings of the 2020 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software. 1–17.

[28] Hila Peleg, Sharon Shoham, and Eran Yahav. 2018. Programming not only by ex-
ample. In Proceedings of the 40th International Conference on Software Engineering.
1114–1124.

[29] Patrick Rein, Jens Lincke, Stefan Ramson, Toni Mattis, Fabio Niephaus, and Robert
Hirschfeld. 2019. Implementing babylonian/s by putting examples into contexts:
Tracing instrumentation for example-based live programming as a use case for
context-oriented programming. In Proceedings of the 11th ACM International
Workshop on Context-Oriented Programming. 17–23.

[30] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.
2018. Exploratory and live, programming and coding: a literature study comparing
perspectives on liveness. arXiv preprint arXiv:1807.08578 (2018).

[31] Joël Schneider. 2020. Design and Implementation of a Graphics Window and
Debugger for WebTigerJython. Master’s thesis. ETH Zurich.

[32] Ben Swift, Andrew Sorensen, HenryGardner, and JohnHosking. 2013. Visual code
annotations for cyberphysical programming. In 2013 1st International Workshop
on Live Programming (LIVE). IEEE, 27–30.

[33] Steven L Tanimoto. 2013. A perspective on the evolution of live programming.
In 2013 1st International Workshop on Live Programming (LIVE). IEEE, 31–34.

[34] Sverrir Thorgeirsson, Lennart Lais, Theo Weidmann, and Zhendong Su. 2024.
Recursion in Secondary Computer Science Education: A Comparative Study
of Visual Programming Approaches. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education (SIGCSE 2024). Portland, Oregon. In
Press.

[35] Sverrir Thorgeirsson and Zhendong Su. 2021. Algot: an educational programming
language with human-intuitive visual syntax. In 2021 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 1–5.

[36] Sverrir Thorgeirsson, Theo Weidmann, Karl-Heinz Weidmann, and Zhendong Su.
2024. Comparing Cognitive Load Among Undergraduate Students Programming
in Python and the Visual Language Algot. In Proceedings of the 55th ACMTechnical
Symposium on Computer Science Education (SIGCSE 2024). Portland, Oregon. In
Press.

[37] Varshini Venkatesh, Vaishnavi Venkatesh, and Viraj Kumar. 2023. Evaluating
Copilot on CS1 Code Writing Problems with Suppressed Specifications. In Pro-
ceedings of the 16th Annual ACM India Compute Conference. 104–107.

[38] Theo B Weidmann, Sverrir Thorgeirsson, and Zhendong Su. 2022. Bridging
the Syntax-Semantics Gap of Programming. In Proceedings of the 2022 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software. 80–94.

[39] Eric M Wilcox, J William Atwood, Margaret M Burnett, Jonathan J Cadiz, and
Curtis R Cook. 1997. Does continuous visual feedback aid debugging in direct-
manipulation programming systems?. In Proceedings of the ACM SIGCHI Confer-
ence on Human factors in computing systems. 258–265.

[40] Cheng-Chih Wu, Nell B Dale, and Lowell J Bethel. 1998. Conceptual models and
cognitive learning styles in teaching recursion. In Proceedings of the twenty-ninth
SIGCSE technical symposium on Computer science education. 292–296.

https://horstmann.com/codecheck/python-questions.html
https://horstmann.com/codecheck/python-questions.html

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Live Programming
	2.2 Algot

	3 Example-Based Programming in Algot
	4 Method
	4.1 Tasks
	4.2 Data Analysis

	5 Results
	6 Discussion
	6.1 Threats to Validity

	7 Conclusion
	References

